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Three-dimensional contact problems for an elastic layer of thickness A lying on a rigid
base without friction are considered. Friction forces between the stamp and the layer are
assumed absent.

The case when the region of contact of the stamp with the layer is an infinite strip of
width 2a is studied.

The base of the stamp is arbitrary. The whole analysis applies to the case when the
relative thickness of the layer A = A/a is relatively small.

The method of [1] is perfected and developed further, and examples are given.

1. Formulation of the contact problem for an elastic layer. The problem of the effect
of a stamp in the shape of an infinite strip on an elastic layer of slight thickness reduces

to the solution of the system of Lamé equations
(1.1

0 99 a
A—2v)Au+3 =0, (1—2)Av+3 =0, (1—2v)Aw+50=0

with the boundary conditions

forz=4h

T = G (0u [0z + 0w [ 0x) = 0 (— oo L2,y < o0)
ryzzG(av/az—}—aw/ay):O (— ooz, y < o0) (1.2)
6:=2G[0w[dz+Ov/(1—2v)] =0 (y|>a =] < o)

w=—f(x, y) (ly1<a lz| <o)

forz=0
Te: = G(0u [0z + 0w/[dzx) =0 (— 00 < 7, y < )
Tyz = G(@v/ﬁz-{—&w/@y):O (— oo <L, y < o0) (1.3)
w=0 (— oo < 7, y < )
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The displacements decrease as ]yl — 0.

Here A is the three-dimensional Laplace operator, v is the Poisson coefficient, G is
the shear modulus, f (x, y) is the function of settling of points of the surface of the

elastic layer under the stamp, and is even in y.
We seek to determine the contact stresses
5z1z=h:”"q<x: y) (yl|<<a, _°°<x<°°) (1.4

due to the interaction between the forces acting on the stamp, and the indentation in the

stamp.
Let us represent the function f (x, y} in the form
flz, y) = f(z ) + f-(zy {1.5)

where f. (Z, §) is a function even in x, and f- (Z, ¥) is odd in x. Consequently,
problem splits into two: ‘even’ and ‘odd’ in x.

Below we shall consider only the case even in x; the odd case is completely

analogous. Henceforth we shall omit the + symbol from the function f+ (2, ¥) .

Let us seek the solution of (1.1) under the conditions (1.2) and (1.3) as

u:%SU(a, ¥, z)sinaz da, vz?tz—SV(a, Y, z)cosax do

0 - 0 (1.6)

= %SW(@, Y, z) cos ox do.
0

Let us substitute (1.6) into (1.1) and let us perform all the differential operations

under the integral sign; equating the integrands to zero we obtain the system

ayr __ & __2(1--v) _ 98 ]
PU—r=50 =5 @U=0 (p=z5+3)

(1 —=2v)DW + 8/ —alU, — (1 —2v) a2V = 0 (1.7

A—2V)DW 46, —al —(1—2)a*W =0 (97, +wy)

Analogously, from (1.2} and (1.3) we obtain the following boundary conditions
forz=#h

U/ —aW =0 (—wo<y<oeh V) +W/ =0 (—mc<y<oo)
A=W,/ + V08—l =0 (y|>a), W=—F(x3) (yI<a 18

forz =0
Uz’___aW:O («—oo<y<°°)’ ‘Vz"“}"‘W'y’:O (-—-00<y<oo) (1.9)
W=0 (—w<y<)
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The functions U, V and W decrease as |y | — oo,

Here F (@, ¥) is the Fourier cosine transform of the function f (x, y), i.e.

(o0} [ee]
9 ¢
f(z, y)= 75 F(a, y)cosazda, F(a,y)= Slf(x, y)cosoaxdzr (1.10)
0 0
Furthermore, let us assume that the function # (a, y) satisfies the following condi-
tions:

(1) For any fixed 0 < a < oo it has a continuous first derivative in ¥ & [— a, al

with the exception of a finite number of points of discontinuity of the first kind ;

(2) For any fixed 0 < a < oo it has a finite number of points of discontinuity of
the second kind for the second derivative with y &= [— q, al;

(3) For any fixed ) < a < oo it is strictly monotone in y for 0 < | y | < a.

If the function F (a, y) is not strictly monotone in y, then a strictly monotone function
¢ (@, y), may always be selected such that F) (@, y)+ ¢,/ @ y) >0 or F) (@ y) +
9, (@, y) <O, and F (a, y) represented as the combination of two strictly monotone
functions.

Let a strictly monotone function F* (a,y) be a continuation of the function F (a, y)

into the interval a < |y| < oo while retaining all the other properties of the function F (a,y).

Let us make the following change of variables in equations (1.7) and the boundary

conditions (1.8) and (1.9) remembering that the problem is even in y
= 81yl =—= B (11D
n=——o(ly) L=—5 O< |yl <o, 0<2<h) (1

We shall require the following conditions to be fulfilled :

(1) The function 7) must be strictly monotone and decreasing for 0 < |y| < ooi.e.

7 (lyl) <O.

(2) The function 7 has a continuous first derivative in ¥ & [— oo, oo], with the
exception of a finite number of points of disccntinuity of the first kind, and has a finite
number of points of discontinuity of the second kind for the second derivative with

yE [— oo, ool
(3) The function 7 (y) takes on the following values:

Here C, and C, are positive constants and C, <o, while C, may assume infinite

value. Let us take the function @ (|y|) as
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_ Fa, a)—F(a, y)

o) =F G aa—tgn  fr OSlyISa (1.12)
m(iﬂ):“i’ 2) — F7 {2 4) for a<{jyl<oo ‘
F¥a, a)(a—[y))

Then it is easy to show on the basis of the properties of the fanctions F (a, y) and
F* (q, y), that } = 1) (| y|) satisfies all the properties listed above. At the same time

the function

F(ay) =b(@+ b (@n (1.13)

for all 0 < [y| < a,where
by = F (a, a), by = — hF) (0, a) (1.14)

The back substitution of |y] and z with 77 and £ asymptotic for small A may be

uniqnely represented as
lyl =a—k+..., z=—hi (1.18)

Having made the substitutions (1.11) in (1.7}, in the boundary conditions {1.8), (1.9),
neglecting terms of order 4 and A? in the obtained relationships and putting 1 /A = oo
(A = h/ a), we obtain the following system of differential equations with the boundary

conditions
DW*=0, (1—2)DW* 48,4 =0, (1—2)DW*+6* =0 (116
for {==1
UM =0 (—oo<n<o) Ve +Wy* =0 (o) (11D
(1 —2V)W,* 4 v0* =0 (— 00 <1 <0), W* = —[by (@) + by (@)} ] 0 < < o0)
for {=0
Ut*’ =0 {(— o0 < o0) Vt" + Wn*' =0 {(— oo << o)y (1.18)
W*=0 (—oo<n< )
The functions U*, V*, W* decrease as I'I] I - 00,

At the same time the function b, -+ b1} is continued apalytically with extension of
the coordinate 7 into the domain A™l@ (0) << < oo.

Now it is easy to see that the considered problem, when the thickness of the layer

is taken into account is split into the following two problems.

1. The determination of the solution of the first of the differential equations (1.16)
taking into account only the first of the boundary conditions (1.17) and {1.18) and the
condition that the function U* decreases at infinity; it is known, that the solation of this
problem is identically equal to zero.
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2. The solution of the system consisting of the second and third differential equations
of (1.16) taking into account the remaining boundary conditions of (1.17) and (1.18) and the

conditions that the functions V* and W* decrease at infinity.

The last problem is a contact plane problem on the effect of a semi-infinite flat in~
clined stamp on an elastic strip of unit thickness. This problem may be reduced [2] by the
methods of operational calculus to the solution of the following integral equation in terms

of the distribution function of contact pressures * (q, 1):
[e0]
(ot 9Ka—mdi=magib(@+b@n  E<n<=) @19
0

oOL cosh 2u — 1 G
K(T-—-'I’]):S iu)cos(*t——-‘n)udu, L(u):m}:}_—g, A=1y (1.20)
Q

Evidently, the function ¢* (a, 1), is connected with ¢ (, y) by meauns of the rela-
tionship*

2 ¢ 2 ¢
2 )~ 2 [ 0" @ mcosowda -~ % (@ (@ y)cosasds .2
1] 1]

Thus, the asymptotic solution of the considered problem is for small values of the
parameter A, determined by (1.21) if the solution of (1.19} is known. The connection
between the stress acting in each cross-section of the stamp and its settling is deter-

mined from the formula
a

P@)=§ ¢(= vy (122
—
The solution of the problem vanishing at ¥ = - a will when a is fixed evidently
exist if
o0
Jillla Va— yzos ?(a, y) cosaxda =0 (1.23)

This relationship imposes definite constraints on the function f (x, y) which is of
the form (1.10).%*

1f the function f {, y) is periodic with the period of 2, then the Fourier integral (1.10)

transforms into the Fourier series

* Formula (1.21) was obtained by an appropriate transformation of the Huhn's law formula
foro .
z

*+ All the presented results may be obtained by means of an asymptotic solution of the
integral equation of the considered contact problem {see (1.29)) for small A as has
been done in [1], say; i.e. its asymptotic solution for small A is given by formula
(1.21).
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o0
nnx
f(z, y)= 2 In(y) €08 —— (1.24)
n==0
and the asymptotic solution of the problem for small A (1.21) evidently becomes

1 [= o]
g(z, y) = Z q,) cos—” (1.25)
n=0

If the function f (x, y) is degenerate, i.e.

N
F@ gy = 2 Fa @) ¥a (2) (1.26)

n=0
then it can be shown that the solution of the problem will also be degenerate and re-

presentable as

N
gz, y)= % §0 7, ¥, (z) (.27

where N is any natural number, or infinity.

In (1.25) and (1.27) the function gn (¥) = gn (1)n),where gn (1),) is the solution of
the integral equation {1.19) with the right hand side

bon <+ biain = fn () (1.28)

and where 7) is constructed by means of (1.11) and (1.12) while the constants b, aad b,,

are determined from (1.4).*

It was mentioned above that the function f (x, y) is assumed even in y, however,
the solution may be obtained even for the odd function f (x, y} which is in y by atilizing

the example given below.

It is known (see [3], say), that the solution of the system of Lamé equations (1.1)
which the boundary conditions (1.2) and (1.3) can be reduced by the methods of operational
calculus to determination of the contact stresses ¢ (x, y) from the integral equation

a o0

S Sq(s, t) K (R | h)ds dt = 2xmhyf (z, y) (:::j’;)
:ﬁw‘” (1.29)
K(—h—)=§L(u)Jo(uR/h)du, R=VGE—a FE—3p

* It is assumed that the functions f, (y) are strictly monotone in y forall 0 < |y|< e
and for any natural n, and that they also satisfy other conditions formulated above for the
function ¥ (a, ). If some of the f, (y) are not strictly monotone, it may always be re-
presented as a combination of two strietly monotone functions.
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Let us suppose that we require to find the solution of the integral equation

§ §renr(F)dsa=2uee@n()Ss) o

where f (x, y) is an odd function of y. Moreover, let

g* (x1 y) + ¢ (x) (1.31)

be the primitive of the function g (x, y) in y.

Let us find the solution of (1.29) when f (x, y) is equal to (1.31). This solution must
vanish for y = t a, and this will yield a condition for the unique selection of ¢ (x). Let us
differentiate both sides of (1.29) with respect to y, where f (x, y) has the form (1.31).

Afterwards, taking into account that

K/ (RIh =—K/@RIEK (1.32)

let us transfer the derivative from the kernel to the function ¢ (s, ¢) by integration by parts.

We now see without difficulty that the solution of (1.30) is of the form

p (s, t) = q (s, t) (1.33)

where g (s, ¢) is the solution of the first integral equation (1.29) with f (x, y) equal to
g* (z, y) + ¢ (z), and, which vanishes for y = +a.*

The relation between the moment present at every cross-section of the stamp and its

settling is determined by the formula
a

M (z) = S q(z, y)ydy (1.34)
—a
Let us note that the force P (x) and the moment M (%) acting at each section of the

stamp may also be determined by means of the relationships [2]

a

P (z) = 5‘]0 W= ydy,  M@)= S Py /(= y)dy  (1.35)

—a
where g, (y) and p, (y) are, respectively, the solutions for the case flz, ) =1 (a
stamp) and g (z, ¥) = ¥ (inclined stamp).

* 1f the asymptotic solution of the first integral equation (1.29) is known for small values
of the parameter A, then by (1.33) we shall obviously obtain also the asymptotic solu-
tion of (1.30).
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2. Solution of the integral equation (1.19). Let us consider a more general integral
equation

S Q, (%) K (v —n) dv = iy (0N 00) (2.1)
0

The closed solution of this equation may evidently be found directly by the Wiener-
Hopf method, as it was done in [4]. However, it should be noted that a more direct way
exists for the determination of the solution of the integral equatida (2.1) for any 5, which
follows.

Let the solution of the auxiliary integral equation

{eE nkE—mar=m™  @<<e0) (2.2
0

be known.

Differentiating this solution n times with respect to ¢ and subsequently putting
e = 0 we shall evidently after dividing the result by i*, obtain the solution of (2.1).

The solution of the integral equations (2.1) may also be obtained by still another
method, which is somewhat more complicated than the preceding, but is of considerable
theoretical interest. Namely, let us put & — 0, in the solution of (2.2); then evidently
we obtain the solation Qg (7) of (2.1) for n = 0.

Let us introduce the function
T

S Qo (1) dt = Q° (1) (2.3)
0
Then, let us put Qy (7) = Q,* (t)in (2.1) for n = 0 and let us transfer the derivative
into (1— 1) by integration by parts. Afterwards, noting that K/ (v—m)= —K ﬂ’ (t— ),
and integrating the obtained relationship with respect to 7 between the limits 0 and 7, we
shall obtain the following integral equation for determination of Q,° (1):

{ormre—na=mnta (o={e@KEm ) (2.4)
o 1]

The term outside the integral, which is obtaiued in tranaferring the derivative
vanishes since the function K (¢} decreases by exponential® as |¢| + = while Q,° (0) = 0.
It obviously follows from (2.4) that the solution of (2.1) forn =1 is

Q1 (1) = Q,° (1) — ¢Qy (7) (2.5)

Now, we shall determine the constant c in (2.5); to do this, let us consider the
auxiliary integral equation

* The exponential decrease of the kernel K (¢) at infinity, as well as some other proper-
ties, will be shown below.
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{rv@KE—mar=mtn  (—eo<n<oo)
_%o (2.6)

together with the integral equation (2.1) for n = 1.

It is easy to show that the solution of the integral equation (2.1) with n = 1 and
T -+ 00 tends to the solation of the integral equation (2.6), i.e.

lim [Q(v) — v ()] =0 for T— o° Q.7

This condition may just be used to determine the form of the constant ¢. The solution
of (2.6) is easily found by applying the Fourier transform, and is

v(n) = _2_5_ °§ ©X* (v —n)dr (K‘ ®) =0§ 7 ?u) cos tudu) (2.8)
0 0

Repeating the above-mentioned system of procedures m times, we obtain the solution
of the integral equation (2.1) for n = m.

Now, let us determine the solution of (2.2). In order to obtain a solution which is
practical, it is necessary to approximate the kernel X (¢) by a simpler expression. To do
this, let us consider the properties of the functions L (u) and K (¢) in more detail.

It is easily seen that the function L (&) has the following properties :

(2.9)

L(u—»Au+ 0@t for u— 0, (A =1,); L —1+ 02 for u—
and it can also be shown that [2]

K@) ~—njtj+B for t-0 (B = const) (2.10)

Moreover let us show that for large ¢ the function K (¢) decreases exponentially. To
do this, we shall consider the auvxiliary integral

e’ltl dz

L (z)
z

J(t) = S 2.11)
I

where z = u -+ iv, the function L (z) is given by the second relation of (1.20), the
contour of integration I" passes along the real axis* and the semi-circle of radius R in the
upper half-plane. Let us represent the function L (z)/z as the ratio of two even functions
entire in 2z, namely

L(z) | z = P(2)| Q(2) (2.12)

* From the second relationship (1.20) it is easily seen that the function L (z) has no poles
on the real axis.
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Now, letting R tend to infinity in (2.11), taking account of the second property of
(2.9) and using the theory of residues, we obtain

P (L)

K ()= lim J (1) = i § Ty P ) (2.13)

Here g’k are the roots of the entire function Q (z); and Q (z) has no multiple roots. It
follows from (2.13) that

K@) ~el™ for [t|—> 0 (¢ =inf|Im &) (2.14)

It can also be shown that for 0 < |{|< oo the kernel K (t) is a function, which is
continuous and continuously differentiable any number of times.

Now, let us approximate the function L (), in agreement with (2.9), by the expression

Y (F-4)

Luy=u BPILE T =4

(2.15)

As can be shown hcre, that all the fundamental properties of the function K (¢) men-
tioned above are still satisfied. In the problem under consideration, the error in the ap-
proximation (2.15) does not exceed 12% for D = 1.

Omitting the explanation of the application of the Wiener-Hopf method to the integral
equation (2.2) when the approximation (2.15) is used, let us give the final result

ien E -Dn 2| psy'h
Q (& ) 212_(5)“ el VD Fie)n+ ‘:/D ‘fe “Vnn (K(s) =(8(—8,'t;)—g)7—) (2.16)

From (2.16), as shown above, we obtain the solution of (2.1) for n = 0,1. Analogous
solutions may be obtained by utilising the other example given above; it should only be
mentioned here that the solution of (2.6) for the considered problem is

v(m) =/ A (2.17)

In conclusion, we shall quote the solution of (1.19), which is

Q" @ = % {ibo () + b1 (e my et VIR +
s 1 VA)] V_“f_ e'D"} 2.18)
\V 4D VD/) Vany
3. Solution of the contact problem under consideration. Substituting (2.18) into (1.21)
and utilizing relationships (1.11), (1.12) and (1.14) we obtain the asymptotic solution of

the considered problem for small A in form

q(x, y) = ;rmA {F (a, y) erf( F(“’h?yf(uf f:; y) )l/‘-|- (3.1)
H(Va-4)Fe a)+%)F(oc, D+ (s — Y2V Wby @, @) x
X

F(a, a) —F(a, y)\-' F(a, a)— F(a, y)
) exp (—— D R, (@, a) )} cos ax da.

s + 0 () (7o

A
V= ( hF, (a, a)



158 V.M. Aleksandrov, V.A. Babeshko and V.A. Kucherov

Solutions of the type (1.25) and (1.27) may be represented analogously. The condition
(1.23) that the solution (3.1) vanish for ¥y = t a is evidently
VA AN o
F (o, a) + (—V——D—‘Zﬁ hF ) (&, a) = 0 (3.2
Substituting (3.2) into (3.1), we shall obtain the solution of the considered problem

vanishing for y = t a, as

2 ¢ F ’ - F y l/2
o= e (o0
0

‘hF) (a, a) y ‘ (3.9)
- ( ynD' [F (o, a) — F (o, y)]) exp (—D F(o, a)—F(a y) )}cosaxda

hE ) (a, a)
Now, let f (z, y) = g* (z, y) + ¢ (Z). Let us determine the function ¢ (x) from

the condition (3.2) that the solution becomes zero on the edges of the stamp

c(a) = —G*(a, a)—(V‘T1 1

i s

Here ¢ (@) and G* (@, y) are cosine Fourier transforms of the functions ¢ (x) and
g* (x, y). Substituting the transform F (a, y) = G* (a, y) + c(a) into (3.3) and then
differentiating both sides with respect to y, we shall obtain, in conformity with (1.33), the
asymptotic solution for small A of our problem for the case of the function g (x, y) odd in
y, of the displacement of the surface of the elastic layer under the stamp:

2 o« G* (a, a) — G* (a, Ya
p(z, y):thZSG(a, y)[erf(D (“h(‘;’z*,(a' a)“ !l)) +
0

G* (o, a) — G* (o, y)\~": G* (a, a) — G* (a, ¥)
+ (n ARG ,* (o, a) ) exp <—D "G, (@, a) )] cos ax da

(3.5)

where G (2, Y) is the cosine Fourier transform of the function g (x, 7).

Let us now consider the case when the Fourier cosine-transform F (&, ¥) of the
function f (x, y) is not strictly monotone in y. In this case, as remarked in section 1, it

is necessary to represent the function F (¢, y) as

F y) =¢(@y —¥@y (3.6)

where the fanctions @ (@, ¥) and VP (&, y) are strictly monotone in y and satisfy other
properties mentioned in section 1. Then the asymptotic solution of our problem may be

presented for small A, as the combination

g (2, ) = q1 (2, §) — g2 (2, ¥) (3.7)

where 91 (%, ¥) and g3 (Z, ¥) are determined from (3.1) in which F (@, ¥) is equal to
¥ (a, y) and @ (a, y) respectively.
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For the particular case of f (z, y) = f (z), which as will be shown later plays an

important part, the solution (3.7) becomes

g(z, y) = ~—~—S F () [erf(D ? (% 2)— @ (% y) )‘f=+

0 " ) (3.8)
Q{a, a)— (2, y) \-" 9, 2) — (2, y)
+ (n AR, (@, o) ) exp ( D Fo, @, a) )] cos oz do

where F () is the cosine Fourier transform of the function f (x).

The force and the moment acting in a section of the stamp may be determined by
formulas (1.22), (1.34) or (1.35). After simple manipulations the formula (1.35) for the force

may be represented as

P(z)=— { cosazda S F (o, y) Qo (o ¥)dy (3.9

where Q, (@, Y) is an expression contained in square brackets in (3.8), in which, not un-
expectedly, @ (@, ¥) is replaced by the function F (a, ¥).

It is easy to see from (3.7) and (3.8) that the asymptotic solution of the considered
problem for small A is not determined uniquely, namely, some arbitrariness exists in the
selection of the function @ (a, y), which possesses only the properties mentioned in
section 1. Evidently, the solutions obtained are asymptotically equivalent for small A,
however, the range of their practical utilization in A apparently depends on the success in
selecting the function ¢ (a, y). The exact limits of the practical utilization of the ob-
tained solation may be learned only by constructing the next term of the asymptotic
solution of the considered problem for small values of A. Here this question will not be
considered ; however, specific computations have shown that all the obtained solations
may be used confidently at least in the range 0 <72 <C¥/,.

Here, we shall select the function @ (o, ) by its suitability. Namely: (1) if the
function F (@, y) is not strictly monotone in |y|, then such function @ (@, ¥) should be
chosen, which is analytic in y for 0 £ |y| < a, and which does not carry its asymptotically
small singularities for small A into the solution of the considered problem, (2) if the function
F (a, y) is strictly monotone on 0 < |y| <a then the function @ (y, @) identically equal to
zero should be chosen, (3) if the function F (g, y) = F (o), which corresponds to & stamp
plane in y, then the function @ (@, y) ib (3.8) is arbitrary, however, if F (@) is combined
with the function®G (o, y),0dd in y, then such function @ (@, ¥) should be chosen, in (3.8)
which is equal to G* (a, 3},

Let us consider the plane problem, namely the case when f (z, ¥) = f (y). Evidently
all the formulas obtained earlier may be used here if we remember that the cosine Fourier

transform for the function f (x, y) becomes

F (o, y) =ad (a) f(y) (3.10)

* An analogous fact holds for the general case of (3.1).
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whered (@) is the Dirac delta function, and if we utilize the known properties of the

function (a). For example, {3.1) may be represented as
=X fla)—7 N T 1 1
1) = g f @ ert (D SO 4 [(VA— ) f @) 4275 1) +

(5 ) )] (7 50 e (— p gy O

The remaining formulas (3.3), (3.5) and (3.8) assume an analogous form.

It is easy to note, that the solution (3.1} within the line of contact [ — 4, a] tends

rapidly to the corresponding degenerate solution defined by the formula*
g =xW/A4h |y|<a (3.19)

If the function f (y) has angular points y = b; within the line of contact, then from
(3.11) and (3.12) it follows that the solution of the problem g (y) will behave as |y — b,

at these points.

If the function g (y) has discontinuities of the first kind at the points y = ¢; within
the line of contact, then it may similarly be established that the solution of the problem
p (y) will behave as sign (y - ¢,) at these points.

However, it is known [5], that in the case of an elastic half-space the solution of
the contact problem has logarithmic singularities, at the angular points of the function
f {y) and removable poles at the points of discontinuity of the first kind of the function
g (). It can be proved that such singularities are also retained in the considered case of
the contact problem for a layer. Hence, we find that the obtained solutions misbehave at
the angular points of the function f (y) and at the peints of discontinuity of the first kind of
the function g (y). This however, has nopractical effect on the accuracy of the solution
of the considered problem, for sufficiently small A on the intervals between the mentioned
points on the segment ¥ & [—a, 2], and on the iategral characteristics of the solation,
i.e. the force and the moment.

The asymptotic solution may be obtained for a small relative thickness of the layer A
which has the necessary singularities at the above-mentioned points. A more accurate

solution can be given in the form

4@ = () + 02 (o) — 4L 3.1

where g, (y) is given by (3.11) together with the corresponding formula obtained from (3.5),
and g, {y) is

9 (y) = Mgf;‘(n)K* "’)dn (3.14)

or, taking into account the approximation (2.15)

* Analysis of the case F (o, y) = F (@) + G (a, y) is utilized here.
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B =% °§ 1[(5— D)Ko (D 27Y) — (25 K (D 157Y)]dn (545

It may be shown that ¢, (y) has logarithmic and removable singularities at appropriate
points, and also tends rapidly to the degenerate solution of the form (3.12) on departure

from these points.

Let us note that in the case of plane problems (f (x, ¥) = f (y)), the limits of
applicability of the asymptotic solutions for small A obtained in the manner described

above, may be broadened by application of the following method of correction.

Let g (y) be the asymptotic solution of the plane problem for a flat stamp, which
may be determined from (3.8). Evidently, the expression ¢* (¥) = g, (¥) % (A) is also
an asymptotic solution of the same problem if ¥ (A) — 1 as A =0, i.e. for small A it

asymptotically satisfies the integral equation

a
g g* (M) d’qS L@ oos ("’;g u) du = my, (3.16)
—a

for all values |¥ | < @, which are obtained from (1.29) for the plane problem case. In

particular, for y = 0 we obtain the following expression for the correction factor % ())
from (3.16):

% () = my, [S g0 (M) dng £ oo (ﬂu> d“] 317

The integral (3.17) may be tabulated in terms of the parameter A on an electronic
computer, Calculations have shown that the more exact solution ¢* (y) has wider limits

of applicability, namely, it may be used with sufficient accuracy over the range 0 <A < 2.

Let us present some results of the calcnlations. Putting F (@) = 8 (@) in (3.8) and
choosing ¢ (a, y) = y2, we obtain the expression for g, (y) as

(3.18)
=i o[ (1~ 2]+ EE (= ) e [ (-5

Let us also give an expression for the force P obtained by means of (1.22) together
with (3.18)

P (52) o (1 4 YA ) moim+rnom)]  eo

Presented in the table are the computed values of the correction factor x (A)y ob-
tained by means of (3.17) and (3.18), as well as the values of the stresses g, (y) and
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q* (y) and their corresponding, (practically exact) values of the stresses taken from [4).
The last two columns give the values of ® = lim ¢ WV a® — ¥ for y -+ a and of the
force P.

|
A x

l 0 0.4 0.6 0.8 0.95 w/X P/Xa

aqo s 3.95 3.97 4.02 4.27 5.89 1.59 | 8.91

X 1 2.05 2.09 2.18 2.48 3.93 1.43 | 5.03

2 1.14 1.19 1.28 1.54 2.67 0.80 | 3.05

ag * /g 1.00 3.9 3.97 4.02 4.27 5.89 1.50 | 8.1

B 1 0.93 1.90 1.94 2.02 2.30 3.65 1.05 | 4.67

2 0.87 0.99 1.04 1.12 1.35 2.33 0.70 | 2.66

a9 Y2 3.97 3.94 3.90 4.00 5.74 1.58 | 8.7

X 1 1.92 1.93 1.99 2.24 3.80 1.12 | 4.70

1%} 2 0.97 1.4 1.0 1.38 2.56 0.79 | 2.75

Having constructed the more accurate solution of the problem g* (y) for a flat stamp,
by means of the Krein [6] formula, we can determine the corresponding solution of the
problem for any shape of the stamp. The approximate solutions thus found, together with
the corresponding approximate solutions [2 and 7] of the method of large A, cover the whole
range of variation of the parameter ) & (0,00) with an accuracy sufficient for practical
utilization.

In conclusion, let us consider a specific example f(z, ¥)=|¥| (plane problem). By
means of (3.11), we obtain without difficulty, the asymptotic solution for small A in the
form

L e
X Viﬁ (“_T#)"/e exp <_Da_h|y; )} (3.20)

We obtain the expression for the force by means of (1.22) and (1.35)

P (YR A Y e 2

+< L3 __7"_>\ D}hn ),/28-1)/7\} (3.21)

pz_%%a_{[_;__{_(]}/;_ 2D >}"+< 8?1’)2 —% r/%)xﬂ]erf(i;—)‘/z—}_

i [_;« + (55 3 1‘;; ) A] (ﬁ};?)% e‘D/*} (3.22)

Now, by (3.5) we easily find the asymptotic solution of the problem for the case
g(z, y) =sign y as
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P = 255 [art (p 2211y (o S5 g0 )] )

The expression for the moment defined by (1.34) has the form (3.22), and the express-
ion defined by (1.35) is representable as

- B (G )en (BT ¢ o) o

Both the formulas for the force (3.21) and (3.22) and the moment (3.22) and (3.24), are
asymptotically equal

=1/ Ys s

P =142  2.33 4.34
P =134 2.2 4.21
M =123 2.2 4.21

and yield in the range 0 <4 < ¥/, results given above, which practically coincide.

Let us note that the obtained results are completely applicable to the analogous
contact problem for a layer when its lower boundary is connected rigidly to a nondeformable
base. In this case, only the values of 4 and D in the approximation (2.15) will change.

4. Formulation of the contact problem for an elastic layer (case of a stamp of circular
cross-section). Let us now consider the problem of the effect of a circular stamp on an

elastic layer of slight thickness.

Let us represent the function f (r, @), defining the settling of points of the surface

of the elastic layer under the stamp, as
fire) =f(rne) +1(re) 4.1)

Here ,f,, (", ‘P) and f_(r, (P) are, respectively, the function even and odd in P.
Below we shall consider only the even case, assuming that the odd case is obtained

analogously. Hence, in the following, we shall omit the + sign on the function f+ (r, (p)
We wish to determine the contact pressure under a stamp
q(r, @) = —0z|:=n O<r<a (4.2)

the connection between the stress resultants acting on the stamp, and the degree of

penetration of the stamp into the layer.

Assuming that the fonction f (7, @) admits of a Fourier-Bessel series expansion

of the form

F(r, @) = 2 fa(r)cos ng 4.3)

n=0



164 V.M. Aleksandrov, V.A. Babeshko and V.A. Kucherov

let us seek the solution of the system of Lamé equations in cylindrical coordinates with
boundary conditions of the considered problem as

o0 [0
u(r, @, z) = Z un (r, z) cos ng, v(r, 9, 2) = 2, vn(r, z) sin ng
=0 n=0
" o 4.9
w(r, g, z) = 2 wy (7, 2) cOS NP
n=0
Then, for the determination of Un, ¥n, and w, we shall have
1 00, 1 a0, Uy, on .
T TAnm=0  gom gt A=
1 nd, v 2n
T:j;—rﬁ-l*avn-'—r;——?un:o 4.5)
& a2 1 8 n? dw,, ou,, Uy | n
(P=gztamtra—T b= t5 7+
( where v is the Poisson coefficient).
The corresponding boundary conditions take the following form:
du, ow i) nw,
e =0 w5 =0 0<r<e)
dw,, v
et T =0 <r<x),  w=—/a(r) (O<r<a)
npa z =0 (4.6)
du ow, v nw,
it =0 0Sr<o), =0 (0<r<e)
wn=0 (0<r<oo), Unpy Uny Wn—>0  (r— 00)

Assuming that the functijons f, () satisfy, over the range 0 < r<Ca the pro-
perties (1) to (3) mentioned in section 1, let us change the variables in equations (4.5)
and the boundary conditions (4.6)

. a—r . z 0<7‘<O° 4.7
n=——o{), L=—F <0§z<h) “
where
fa (@) —fo(7) In(8) — 1> (r)
© (M =1y (0<r<a), m(’)ZW)T (e <r < o) 48)

Here f4 (r) is an arbitrary, strictly monotone function, smoothly continuing the
function fn (r) into the domain g < r < oo.

The reverse change for small Ahasthe form r =g — An ..., 7 = — kL.
After the change of variables (4.7) in the above-mentioned equations and boundary condi-

tions, we neglect the terms of order A and A2 in the obtained relationships, and put
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A~1 = oc, to obtain the following system of differential equations and boundary condi-
tions
2y * __ . & 9
2, * *r
(1 —2v) DPup* -0, =0 (e* _ Bu,* N ow,* ) (4.9)

for {=-1

g =0 (—oon<oo), Unt* +Wnn* =0 (—o0LN<o0)
(1“"2'V)wnﬂ*,+ve* =0 {(— oo L 0),
wy* = — ([}na -+ bnlﬂ) O< <o)

(4.10)

for {=0
vt =0 (—oo <o) Unt® FWn* =0 (—o0 N o0)
?}ﬂ* =0 (....oc<’¥]<oo), un*s vn*: wn*_’O (n— o0)
Here
bno =fn (a), bn1 = — hfa (a) (4.11)

We see that similarly to section 1, the original problem has split into two problems.
The first is determined by the first equation of (4.9} and the first and fifth boundary condi~
tions of {4.10), and its solution is identically equal to zero; the second problem, defined
by the second and third equations of (4.9) and the remaining boundary conditions of (4.10),
is the plane contact problem on the effect of a semi-infinite, plane, inclined stamp, on an
elastic strip of unit thickness. The last problem reduces [2] to the solution of the integral

equation
oo

S gn* (v) K (v — 1) dT = 50y, (bno + bmim) O< < ) (4.12)

0

where K (v — 1) and X are given by formulas (1.14).

Having solved the integral equation (4.12), we can find the solution of the original
problem ¢ (7, ¢) from the formala

00 o0
g(r, @) = 2 gn(r)cosng = -,1; Dl gn* (n) cos ng (4.13)
n=yy

n=o0
The connection between the stresses acting.on the stamp and its displacement is

determined by the formulas

a a
P =2x S qo(r)rdr, My=nx S g, (r)yrtdr (4.14)
(4]

[
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The solution of the problem which vanishes at r = a for the fixed g does evidently

occur under the condition

lim Ve —r* D) gu(r)cosng =0 (4.15)

r-»Q ns=0
which imposes specific constraints on the function [ (7, ).

Let us note that the force P and the moment My can also be determined by means of
the relationships [8]

P=2a\p(pinrd, My=a\pa)rd (a6
0 0

where p, {r) and cos @p, (r) are, respectively, the solutions for the cases f (r,e) =1
{flat stamp), and f (r, @) = r cos @ (inclined stamp).

5. Some representations of the solution of not axially symmetric contact problems

for a stamp of circular cross-section. We shall show that the solution of the contact
problem for a circular stamp with an arbitrary base j(r, 9} can always be represented as
a combination of the solutions of axisymmetric problems of definite smoothness on the
contour r = a, ¢ach of which is acted upon by some differential operator.

In fact, by assuming the possibility of expanding the function f (v, ¢) into a Fourier-
Bessel series of the form (4.3), and by using known trigonometric formulas, one may come
to the conclusion that the method of obtaining a solution for the particular case

f(r,@) =¥, (r)cos™ g (5.1
is sufficient for solution of the general problem.

Let us show that the function ¥, (r) cos” ¢ may always be represented as

n
¥, (r)cos® @ = 3 O.F (r) (5.2)

]

Let us differentiate the arbitrary function @, (r) » times with respect to x to
obtain

n
O (r) = D) Dy (®y) cos*e (Da=1" (L ;—r)") (5.3)
k=1 A

Here I, is some differential operator with respect to r and of order %.
For k = n it is shown above in parentheses.

The equality (5.3) may be rewritten as
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n-1
Dy (@,) cos™ @ = O (r) — 3} Dy (D) cos” @ 5.9)
k=1
Let us take the function ®, (r) in the form
On(r) = D3 (¥) (5.5)

Here the operator D;‘, is evidently an integral one and determines the function
@, (r) with the accuracy of up to the (n — 1)-th order polynomial.

Then (5.4) may be rewritten as
n-1 .
¥, (r)cos” @ = @, (™ (r) — ;:2 Dy [P, (W)l cos™ g (5.6)
=1
Utilizing the relationship (3.6), which is valid for any n, and using the notation
lyn_l (r) = Dn»q [Dn-l (\Fn)] (5.7)
we obtain
n-2

¥, (r)cos™ @ = O (1) & @Y () — 3 DDy (¥) + Dy (¥ )] 008'0 (5.8)
k=1

where the fanction @, (r) is determined by (2.5) to the accuracy of up to the (n —2)-th

order polynomial. Continuing this process further, we arrive at (5.2).

Having determined all the functions @y (r) (k = 1, 2, .. ., n) with the accuracy of up
to the (5 ~ 1)«th order polynomials, we then find the solution ' (r) of the axisymmetric
contact problems for stamps with bases of the form

Firg) = Qg (n (5.9)

Afterwards, the coefficients of the arbitrary polynomials are determined from the
following linear algebraic systems

tim 2 g, (r) =0 <Z=°’ 1’---""’“1) (5.10)

r-sa dré

Let us now show that the solution of the problem corresponding to the case (5.1) may
be written as

n
7(r, @)=Y ¢ (r) (5.11)
K==

Indeed, differentiating k times with respect to x the identical equality (see (1.23) for
comparison)

9 (4) K (R | h) dsdt = 2shy®, (r) (;: = :‘:ig’) (5.12)

S+irgar
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and integrating the left hand side by parts k times, we obtain

\ g}” (p) K (11 ] h) dsdt = 2mhy @y V() (5.13)
82 g

The terms outside the integral disappeared, as a result of (5.10).
The equalities (5.13) and (5.2} confirm the validity of (5.11).

If the parameter A is small, the algorithm given above which is valid for all A&(0, o0),
is greatly simplified. Namely, it follows from the results of section 4 that the solution of
the problem in the case (5.1) may be written as ¢ (r,q) = g, () cos™ ¢, where ¢, () is
the solution of the axisymmetric problem for the case f (r, ¢) = ¢, (7).

6. Solution of the considered contact problem (circle) As shown in section 4, the
solation of the considered contact problem reduces to the determination of the function
gu* (%) from the Wiener-Hopf integral equation (4.12). A solution of this integral equation

suitable for the following is given in section 2.

Using (2.21) together with (4.7), (4.8), (4.11) and {4.13), we obtain the asymptotic

solution of the problem for small A

a0 =r5 Z{f (ert (I OV R [y~ =R

Nz

A V] L ( I @~ Iy "’)"”exp ( b In@—1fn(r ))} s v

VD D) Va\ #, (@ H (@)

Formula {6.1) is entirely analogous to (3.1). On the basis of (6.1) the solution of the
considered problem, also analogous to (3.2) and (3.3), which vanishes for r = a may be
obtained. If the functions f_(r), or some of them, are not strictly monotone in 0 < r < a,
then it is again necessary to repeat all the considerations which are presented for this

) fula) + Vi_ falr) +
6.1)

case in section 1.
Let us note that (6.1) and other formulas based on, if may, as well as the formulas of

section 3 be used confidently, at least in the range

0LA=hla Y,

The case of the axisymmetric problem which plays a large part, as was shown in
in section 5, is obtained under the conditions fnin=0(n=1,2,.. .). For this case
we can in the manner analogous to that in section 3 for the case of the plane problem,

construct additional boundary layers at the angular points of the functions f, () which
in combination with the fundamental solution of the problem (6.1), afford a possibility

of obtaining the requisite singularities at these points.

On the basis of (6.1) we shall obtain the asymptotic solution for small A of the
considered contact problem for the case f (r) = 1 (plane stamp) as
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where @ (r) is an arbitrary function, strictly monotone in ( < r < a which also satisfies
other properties mentioned in section 1.

The limits of applicability of (6.2) may be extended to A =2 by the insertion of a
correction factor just as it was done in section 3. After this, more accurate solutions for
any non-plane stamp may in the case of axial symmetry, be determined by means of Krein
{6] formula, which in combination with the corresponding solutions of the method of large
A[3 and 8 to 10] will cover the whole range of variation of the parameter A & (0, oc)
with sufficient accuracy. Taking into account the formulas given in section 5, which con-
nect the non-axisymmetric and the axisymmetric contact problems for a circular stamp,
we can conclude that the whole range of variation of A can be covered by simple formulas
for the effect of a circular stamp with an arbitrary base, with accuracy sufficient for

practical utilization.

Let us now present some specific examples.

Let us consider the case of a parabolic stamp f (r, ) = r2. Utilizing (6.1) we ob-
tain the solution of the problem in the form

q(r)=§—§{;—:erf %(1—%)]%""[( )+V‘D a? +
s (6.3
i)yl (- F)] e [“z% (==
The expression for the force obtained by means of (4.14) is
P‘_ZAA, {[1 + @2 V4D —1)2p~2 + (44D —2 VAD—i)p"]erf i
— 1/,p2 1 (6.4)
—2(1—p?) exp (—2p?) (p___(ﬂ)/’)

pVax A
In the case of a conical stamp (f (v, @) = r) we find by (6.1)

q(r)=kiA{%elf(Da;r)% [(VA VD)‘FT/%%'*'(;—T)—EKDZ) ’"] * 6.9

el om0

The corresponding value of the force obtained by using (4.14) is given by

P2 (VA —§)p+ (40— VD + 3 4 L yD) ey @O

+ (T VAD+ 7 VD—g a0 —5) p*Jertp+ 5+ (VD — 3 —2 VD) +
HEva b v )

Now, let us consider the case of the penetration of a flat inclined stamp f(r.9)
=r cosq.

The asymptotic solution of this problem for small A may be obtained in two ways.
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Firstly, we may use (4.13) and write the solution in form of (6.5) multiplied by cos @.
Secondly, the solution of this problem is obtained if the solution for a stamp with
the base

— 2
f(rg) =r+4c 6.7)

determined from (6.1} is differentiated with respect to x. Here ¢ is selected by the method
given in section 5 from the condition of the solution for (6.7) vanisking at r = a.

Performing all the mentioned operations we obtain
(6.8)

o= [ = 5]+ [l )] o[- R0 )

The expressions for the moments are evaluated by means of (4.14) for both versions
of the solution and are, respectively

= 4 (v o (340§ V) o (V0

—ap—3) o+ (34D — 5 VAD &) po | erip 4| +(VAD — )

]
+(1—6+AD—VE)P"-F(———AD+ZVAD)P‘°]?‘X*M} (6.9)
Myzgﬁa;‘{[i-}—(‘)VAD-—i)Zp" 1 (3—4 V AD) p~t] erf —2= V'
exp (—1/ p%) (6.10

+2{1—@—4 VAD)p >V

Values of the quantity M* =~ M /X%, computed for comparison by (6.9) and (6.10)
are shown on the right A= 1/8 e 12

M* =139 772 475 (6.9
M* — 13.90 7.67 4.57 (6.10)

We see from the numerical values shown, that the formulas for M are asymptotically

equivalent for small A.

In conclusion, let us note that the results obtained here are completely applicable
to the analogous contact problem for a layer when its lower boundary is connected rigidly
to an nondeformable base. In the latter case only the values of the constants 4 and D in
the approximation (2.17) change.

The authors are grateful to I.I. Vorovich for a number of valuable comments.
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TABLE
N % |xa=0l 04 0.6 | 08 | 095 | wx | PiXe
Y, 3.95 13.97 | 4.02 | 4.27 | 5.89 | 1.59 | 8.91
agy |1 2.05 | 2.09 | 2.18 | 2.48 | 3.93 | 1.13 | 5.03
° 2 114 | 1.19 | 1.28 | 1.54 | 2.67 | 0.80 | 3.05
vy | 1,00 | 3.95 | 3.97 | 4.02 | 4.27 | 5.89 | 1.59 | 8.91
ag?/y | 1 | 0.93]1.90 | 1.94 | 2.02 | 2.30 | 3.65 | 1.05 | 4.67
2 10.87 [ 0.99 | 1.04 | 1.12 | 1.35 | 2.33 | 0.70 | 2.66
1, 3.97 | 3.94 | 3.90 | 4.00 | 5.74 | 1.58 | 8.7
ag/x(1] | 1 1.92 [1.93 11.99 | 2.24 | 3.80 | 1.12 | 4.70
2 0.97 | 1.01 | 1.10 | 1.38 | 2.56 | 0.79 | 2.75
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